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Abstract The more general case of interation of quasi-rational mappings, including their Julia sets and quasi-

normal sets, is studied and some results corresponding to complex dynamics are obtained.
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1 Definitions and symbols

Suppose that V is a Riemann sphere with unit diameter. There is a one-to-one correspondence
between V and the close complex plane C . This paper will identify them. Let a, b€ V. The spheri-
cal distance, denoted by a, b, is the length of the shortest curve joining a, b, i.e. the smaller
great circle arc joining a,b on V.

Definition 1. Suppose that f( z) is a continuous complex function in a region D c V. For ev-
ery point zy of D, if there is a neighborhood U C D of zy, and a positive integer n depending on z,
such that

(f(z))=, flzg) = »,
F(z) =

(f(2) - flzo))w + f(2,), flz,) % o

is a univalent K-quasiconformal mapping in U, then f is named K-quasimeromorphic mapping in D,
where the extraction of a root may take any branch. If n =2 in the above formula, then z, is named
as n valent point or critical point, mgy: = F(z,) = f(z,) as critical value, n as valent, and n — 1

as multiple of critical point or critical value.

Suppose that f(z) is a K-quasimeromorphic mapping in a region U C V, then it is denoted by
fE€ Qx(V). 1U| denotes the spherical area of the region U, | L| the length of curve L on sphere
V, (U,f), the covering surface generated by f from U to V, and its area is

| £.(2) 12 =1 £.(2) 12
(1 +1f(z) 1?)?

I(U,f)I=HU dudy, (2= x4iy).
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The average covering times of the covering surface (U, f) on V are denoted by

L (ULA T 1 (UN
[ VI B 1S )

S(U,f) =

Definition 2. Suppose that f€ Qx(C). If
S(e, f): = limS(r,f) = o,

then f is called K-quasitranscendental. If S( o ,f) = d(f) < ®, then f is called K-quasi-rational ,
and d (f) is its degree. If f is K-quasi-rational and f s % always holds, then f is called K-

quasipolynomial .

Definition 3. Let f€ Qx(V) be a K-quasi-rational mapping whose degree d(f) > K. z,€
V is called a Julia point of f, if for any neighborhood U of z,, we have

US(U) S V= ta,bl,

where a, b are two possible exceptional values. The set of all Julia points is called Julia set, denoted
by J(f). The set of all exceptional values is called exceptional set, denoted by E. H(f): =V -]

(f) is called quasinormal set.

If there is a neighborhood U of z, such that the quasi-rational dynamic {f" W 2= fofs f ntl
= fof") is normal in U, then z, is called a normal point of f. The set of all normal points is called
normal set(or Fatou set), denoted by F(f). Obviously F(f)c H(F).

Definition 4. Suppose that f€ Qg (V). If there is a positive number v < 1 and a neighbor-
hood U of z, such that for any v € U, we have | f(z),f(z9)| <vlz,zyl, then z; is called an at-
tracting point of f. If an attracting point z of f satisfies f(z,) = z4, then z; is called an attracting
fixed point of f.

This paper is a continuation of Ref. [1]. In Ref. [1], we proved that J(f) is a non-empty
completely invariant perfect set. Please refer to ref. [ 1 ~ 3] for some other definitions and symbols in

this paper.
2 Julia set

Definition 5. Suppose that f(z)€ Qx( D). We define spherical elasticity rate as

(O fGz) 12 =1 fi(2) 1D +1 2 17)?

S () = (1 +1 f(z) 12)?

Denote M = M(D,f) =supif  (z); zE D - O}, where @ is the set of all non-differentiable

points in D .

Lemma 1. Suppose that f(z) is a K-quasimeromorphic mapping in region D = {lz1 < R}
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and continuous on D = {lzl<R}. f M= M(D, f) < ®, then for any z,, zE D, we have

| f(z,), f(2) 1< VMK | z,, z |.

Proof. For any € >0, connect two points z,, z by a smooth Jordan curve [{e) such that its
length 11(e)l <(1+¢€)lzy, z) and f(z) is absolutely continuous on [(e). We take points z,,
Zys Zgs ***»2, = z on the curve /(&) and denote the section of (&) between z_1, z;by 1(j), such
that

| 1(e) |
—

1) | = j= 1,2, n.

Choose n sufficiently large such that
) I-1f11<e, z€I(),
where | f; | = minl| f(z) 13 z€ 1), j=1,2,-,n. Then

F(2,) . f(2) 1<) fUL(e)) | = limi: 7 +|f|(f(zj)_l|)2—j;(lzj-|)— "f( =
i=t Zj-1 ‘ %

’ | j fidz + fidz |
1

Y

=11m
e ST 1w f(g) 124 f(g) 1
'”*J It Al

iy 1+ £ 17

| dz |.

< lim

As for any z€ I(j), we have

1+ f(z)1?

11 f 1P < 1 +4e.
j

Thus

"-xJ’ I £+ £l
i 1+ flz) 12

= (1 4e)J W\/Wulzﬁldu
-t I(e) 1+l f1? L fol=t 1141212
s(1+4e)x/MKj _da 1

5
ey 1 +1 z1°

| f(z,),f(z) 1 <(1 +4¢) lim

"o

| dz |

=(1+4e) VMK I(e) I (1 +4e)(1 + )V MK | 2,,2 |.

Note £ is an arbitrary positive number. Q.E.D.
Corollary 1. Suppose that the conditions of Lemma 1 hold.
(i) If MK < 1, then z =0 is an attracting point of f.

(ii) Ifinflf* (z); zE D - E} = H> K, then z =0 is a repelling point of f, i.e. there is v
> 1 and a neighborhood U of the origin such that | f(z),f(0) | =vlz, Ol for every zE€ U.

Proof. (i) The conclusion follows from Lemma | immediately. (ii) Take a neighborhood U of



X

¥

X

No. | SUN et al. : INTERATION OF QUASI-RATIONAL MAPPING 19

the origin such that there is no critical point except possibly z = 0. Let

e = minll f(2),f(0)1; z€3U 1}, W, = {1l w,f(0)1< e},

S =min{lz1; 2€ Ul and f(z) €EIW.} >0, U, =1{lz,01< &}.

Then for any z€ U, - {0}, we have f(z) € W,.. On the Riemann surface (U,, f) we get a disk W
such that its diameter is f(0)f(z). Then there is an inverse mapping z = g(w): W—>U, of w = f
(z) on the disk W, and z = g(w) satisfies the conditions of Lemma 1. Let v =1/t = H/K> 1, w,
= f(0), and w = f(z). Noting f*(2)g " (w) =1, and by Lemma 1, we have

12,01 =1 glw),glwe) I t | wywg !l =1f(2),f(0)1 /. Q. E.D.

Theorem 1. Let f(z) be a K-quasi-rational mapping and its degree d = d(f) > K.

(i) The sufficient and necessary condition of zo&€ J(f) is that for any neighborhood U of z,,

we have

lim S(Z; ) > 0.

(ii) The sufficient and necessary condition of z, & H(f) is that there is a neighborhood U of z,
such that

(iii) Let D be a close region on the sphere V, then the sufficient and neceséary condition of D
N J(f) = @ is that there is a region U such that

1IIII'I S(—L;;ﬂ = 0.

Proof. (i) The conclusion follows from Theorem 4.4 of Ref. [1] and Definition 3.

(2] the condition is clearly

(ii) By the fundamental inequality of K-quasimeromorphic mappings
sufficient. If the condition is not necessary, then there exist a sufficient small neighborhood U of z,

with UNJ(f) =0, a positive number € > 0 and a sequence { n; }— o such that

S(U,f)

> €.
d"

By the fundamental inequality of K-quasimeromorphic mappings, we have z,& J(f). This is a con-
tradiction .

(iii) The sufficient part holds from Definition 3. If the necessary part is not true, then by un-
ceasingly cutting D, we choose a sequence | D, | of close regions such that D, > D, >3 D, D
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whose diameters tend to zero and

S(u,,,
linlJmTf")>0

e d

for any m and any region U,, D D, . Connecting it with the fundamental inequality of K-quasimero-

morphic mappings, we obtain z, = (12, D, € J(f). This contradicts the condition. Q.E.D.

Definition 6. Let

P(H) =tu€ J()s #1USL ()} < =},

R(f) =tu€ J(f); #1Uf" ()} = o and U f"(u) = J(DI,

B(f) = tu€ J(N: #1U " (w)t = ® and U f"(u) = J(NOI,

where # {+| denotes the number of elements in {+|. If € R(f), z,is called a dense orbit point.

Obviously, J(f) = P(AUB(NHUR(S.
Theorem 2. Let f(z) be a K-quasi-rational mapping and d = d(f) > K, then

(i) P(f) is the set of all eventually periodic points in J(f) (an eventually periodic point u

means there is a non-negative integer n such that f "(u) is a periodic point) and countable;
(ii) the dense orbit set R(f) is a non-empty dense subset of J(f);
(iii) B(f)isa non-empty uncountable set.
Proof. (i) By definition 6, we obtain Theorem 2 (i) immediately.

(i) Let { B j} be a countable open topological base of sphere surface V. For any open set B;,
U./""(B;) is an open set too. Note that if U, = J(f) N (U,f""(B,)) is a non-empty set, then U,
is a dense open set on the subspace J(f); thus R™ = (];U;is also a dense open set on the subspace

J(f). For any 2€ R* c J(f), its forward orbit intersects every non-empty U;. Hence R “CR
.

(iii) Choose three open sets U,, U,, U, V which do not intersect each other such that
.]0: U()ﬂ.](f)- .]|= U]ﬂ-](f)v .]2: Ugn.](f)

are all non-empty, and their closures do not intersect each other. Take a positive integer n such that

ST = (J) =, (J) = J(f). For any set EC J(f), denote
Fo(E) = f7"(E)Y N Joo F(E) = f(E)N T\ F(E) = f7(E) N .

For every triple fraction b =0, b,b,b;--€[0,1], (b€ {0,1,21), sel
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J(b) = }i_TFbI o Fy oo Fbj(J(f)),

which is non-empty. For an infinite non-cycle binary fraction a =0, a,a,a;--€[0, 1], (aj-e {0,
1}) and any point u € J(a), the forward orbit O* (u) is an infinite set, and 0* (u) (N F,(J(f))
=@. Hence u€ B(f). Since the set of all infinite non-cycle binary fractions is uncountable, B(f)

is uncountable too. Q.E.D.

Theorem 3. Let f(z) be a K-quasi-rational mapping and d = d(f) > K, then f is chaos on’
J(F), i.e. :

(i) the periodic points of f in J(f) are dense on J(f);

(ii) f has topological transmission on J(f), i.e. for two arbitrary non-empty open sets B, D
c J(f), there is a positive integer n such that f*(B)( D = @;

(iii) f has initial sensitivity on J(f), i.e. there is a positive number A >0 for any x € J(f)
and any & >0, two points @, b€ J(f) and an integer n € N always exist such that |x,al < &,
lx,bl <& and | f*(a),f"(b)I>A.

Proof. By Theorem 5.1 in Ref. [1], we have Theorem 3 (i). By Theorem 5.2 in Ref. [1],
we have (ii). Combining Theorem 3 (i) and (ii) with Theorem 2 and noting that there are periodic

points and dense orbit points nearby every point u & J(f), we obtain Theorem 3 (iii). Q.E.D.

Lemma 2. Let f(z) be a K-quasi-rational mapping of d = d(f) > K. Suppose that M = M
(D,f) < ®, and Z is the set of all branching points on the covering surface (V,f), and point A €

V satisfies | A, 5| =¢€/2, then for any points a;, a; among the inverse image f~'(4) = {a,, a,,
s+, a,} of A, their spherical distance |a;, a;l ze/v MK.

Proof. Taking two arbitrary different points a, b€ f~'(A), we have f(a) = f(b) = A.
But f(a) and f(b) do not coincide on the curve ( V, f). They belong to different “flakes” of Rie-
mann surface and f(a), f(b) are joined by the image f(ab) of the spherical line segment ab (i.

e. the smaller great circle arc joining @, b). Because the curve f(a, b) moves around at least a

branching point on ( V,f), by Lemma 1, we have

| a’b | v MK Zlf(a)9f(b) |2|f((l),5 |+ E’f(b) |> €,
where £ is the nearest branching point to a . Q.E.D.

Lemma 3. Let f(z) be a K-quasi-rational mapping of d = d(f) > K and let B = B(e,¢)
={le,zl < e} be the spherical disk. Suppose that M = M(D,f) < ®, and = is the set of all
branching points on the covering surface ( V, f). If the spherical distance of the sets =, B (i.e.

the infimum of lengths of curves joining 5, B) on (V, f) satisfies

| Z,B 1= v MKe,

then f is a one-one mapping from B to f( B).
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Proof. Otherwise there are two different points a, b€ B satisfying f(a) = f( b) but belong-
ing to different “flakes” of Riemann surface, and f(a), f(b) are joined by the image f(ab) of the
spherical line segment ab. Thus the curve f( ab) moves around at least a branching point £§€ 5.
Suppose that f(c) = &. By the condition of Lemma 1, the length of f(ab) satisfies

Ff(a,b) I=1 &,f(a) 1+1 &,f(b) 122 MKe > VMK | a,b|.

This contradicts Lemma 1. Q.E.D.

Lemma 4. Suppose that f(z) is a K-quasi-rational mapping of d = d(f) > K, and M = M
(D,f) < », and E is the set of all branching points on the covering surface (V, f). If a set ¥ =
lay, a,, "',aq} c V (g = 8) satisfies

(i) la, bl =€ for any two different points a, b€ ¥;
(ii) for any a € ¥, la, Elze/2 (¥NE=9),
then there exists a subset ¥'3' — f~'(¥) such that
(a) for any two different points a, b€ ¥;',la, bl=e/v MK,
(b) forany a € ¥;', la, Elze/(2V MK),
(¢) the number of elements in ¥ ;' satisfies # ¥;'> qd - 2d.

Proof. By Lemmas 1 and 2, we may get qd different points in f~'( &) satisfying (a). Thus
for any £€ 5, there is at most a point of f~' (W) in the spherical disk {z; Iz, €1 < e/(2
VMK)|. As # E<2(d -1), we get

U = fUF) —Ugeslzs 12,6 1< e/(2V MK . Q. E. D.

Theorem 4. Suppose that f(z) is a K-quasi-rational mapping of d = d(f) > K, then the
box dimension of Julia set is

Dim(J) = lim log d/K )
7 log+/ f3K

where f3 = supif (z); 2 € J(&) - E}; J(8) = {z5 | 2,0 | < 8}.

Proof. Take ¥ = {a,, a,, ***,ag! C J(f) such that it satisfies the conditions of Lemma 4.
Denote ;" '=(¥;");'. By Lemma 4, we have

# V3 = 8d-2d > 4d,

# V2> (8d -2d)d -2d = 8d% - 2d* - 2d > 4d?,



¢

“

No. | SUN et al. : INTERATION OF QUASI-RATIONAL MAPPING 23

# U > (84 -2d*-2d)d -2d = 84> - 2d> - 2d% - 2d > 44>,

#V." =2(8d"' -2d""' - -2d)d -2d = 6d" -2d(d"? + -+ + 1)
. dn—l -1 . )
=6d" - 2d J-1 > 44",

and for any a, b€ W;"C J(f), we have la, bl =e(MK)™ "%, We cover J(f) with a family of

spherical disks B = { Bj} of radius r = e (MK) ~""%/2. Since at least 4d" small disks of B are need-
(6]

ed to cover ¥, ", and by the definition of box dimension'®’, we have
logN
Dim(J) = lim 25N
~-0 - logr
log(4d") 2logd

= lim

o — log(e (MK)~"2/2) ~ logMK’

where N,(J) denotes the minimum number of small disks covering J(f) in B. Q.E.D.
3 Quasinormal set

Definition 7. Suppose that f: V-—>V is a K-quasi-rational mapping of degree d. For any
point wE V, we say that d,: =d -~ # {f '"(w)} is a deficiency of w and Z wendw is the total
deficiency of f on region D C V. Obviously, d, #0 if and only if w is a critical point.

Definition 8. Suppose that f: V>V is a K-quasi-rational mapping and a set TC V. If f
(T)=T=f""(T), then T is completely invariant.

Theorem 5. Suppose that f: V=V is a K-quasi-rational mapping of degree d. If DC V is
a completely invariant region with Euler characteristic o( D) = p, then the total deficiency of f on the

region D equals p-pd .

Proof. Llet R, be the set of all critical values. Then F(D-1f""(Rp)1) is a regular covering

surface of d multiple on the region D - R;,. Thus we have the following relationship of Euler charac-

teristic :
p(f(D = {f"(Ry))) =d+p(D-Ry),
%;(d—d:)+p= d-(#(Ry) + p),
d- #(Rn)—%;(d—d_.) = p - pd.
Hence "
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By Theorem 5, we have

Corollary 2. Suppose that f: V—V is a K-quasi-rational mapping of degree d,
(i) then the total deficiency of f on the sphere V is 2d - 2.

(ii) if D is a completely invariant simply connected component of the quasinormal set H(f),
then the total deficiency of fon D is d - 1.

‘Corollary 3. There are at most two completely invariant simply connected components in the

quasinormal set H(f).

Theorem 6. Suppose that D is a completely invariant component of the quasinormal set H
(f), then the boundary of D is a whole Julia set.

Proof. Since D is completely invariant, its boundary is a non-empty completely invariant
close subset of J(f) Therefore, it certainly is a whole Julia set. Q.E.D.

Definition 9. Let u be an attracting fixed point of K-quasi-rational mapping f(z). The re-

gion
W(u) = {z€ V; f'(z2) = u}

is called an attracting region. A region N(u) is called a connected attracting normal region, if N
(u) is the largest region in all connected regions containing u where the family of functions {f"(z) |
is normal. The largest region A(u) in all connected regions that contain z and do not contain Julia

point is called a connected attracting region. Obviously N(u) is non-empty and N(u)c A(u).

Theorem 7. Suppose that N(u) is a connected attracting normal region of K- quasi-rational

mapping of d, then N(u) contains at least a critical value .

Proof. Suppose that there is not any critical value in N(u). Take a disk U N(u) of u
such that it satisfies the conditions of Lemma 3. Then we may suppose that the inverse mapping g of
f satisfies g(u) = uand Uc g(U). Let By: = U-{ul, B, =g"(By), n=x1, 2, -+, Then
N(u) - jul =U,B,. On N(u) - {ul we define the equivalence relation ~ : x ~ y if and only
if there is an integer n such that y = g"(x). Use %, to denote the equivalence class containing x .

All equivalence classes form a ring surface T = {x,}. The natural projections
n(x) = Xgs T N(u) - {ul—>T

form a regular covering surface of 7. This contradicts the fact that the universal covering surface of T
is the complex plane C. Q.E.D.

Theorem 8. If the number of components of quasinormal set H(f) is finite, then this number

equals two at most.

Proof. Suppose that the number of components of quasinormal set H( f) is finite and bigger

than two. We take an integer n such that every component of H(f) is completely invariant for the
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quasi-rational mapping S = f*. By Corollary 3, there is at least a component (denoted by A) not
simply connected. Choose a point z in another component D, and a Mobius transformation M moving
z to . Then conjugate S by M to get the quasi-rational mapping F = Mes°M ™' such that © be-
longs to a completely invariant component D' of H(f). Thus the quasinormal set of F comtains a
multiply connected completely invariant component A" in V — D', and A’ is a bounded region in the

complex plane C.

Take a loop h in A’ , such that the regioh B bounded by k contains at least a Julia point. As
A’, D' are invariant and h C A’, for any positive integer m, F"(h) c A’ ¢ V- D'=F"(B) C
V - D' is bounded. This shows F has no Julia point in B. It is a contradiction. Q. E. D.

Corollary 4. Suppose that f has a completely invariant component D in quasinormal set H

(f), then
(i) H(f) has at most another completely invariant component;
(ii) the other components of H(f) are all simply connected.

Theorem 9. If u is an attractive fixed point, then N(u) is either simply connected or in-

finitely connected.

Proof. Take a simply connected closed disk U A(u) such that u € U, f(U)c U and
aU N (Yor (b)) = 9,

where the sum is taken over all critical points { b} . Define E, inductively as follows: Ey= U, E, =

f_l(E,._1)ﬂA(u). Then

Eyc E, c ', A(u) = UE,.-

n=0

If all E, are simply connected, then A(u) is simply connected. Otherwise, there is the minimum in-
teger N such that Ey is not simply connected. Hence Ey is an orientable two-dimensional manifold
whose boundary d E has at least two components. Thus V — Ej has at least two components, too.
Consider again the branched covers f: Ey, ;. > Ey, (k=0,1,2,---). They are actually covering
spaces if Ey, ,,; — Ey, ; does not contain any critical points. But the number of boundary curves of

Ey,, is at least 2%+, Consequently, A (u) will have infinitely many components and A(u) is in-

finitely connected . Q.E.D.
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